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Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) are examples of autoimmune thy-

roid disease (AITD), the commonest autoimmune condition. Antibodies to thyroid peroxid-

ase (TPO), the enzyme that catalyses thyroid-hormone production and antibodies to the

receptor for the thyroid-stimulating hormone, are characteristic of HT and GD, respectively.

It is presently accepted that genetic susceptibility, environmental factors, including nutri-

tional factors and immune disorders contribute to the development of AITD. Aiming to

investigate the effect of iodine, iron and selenium in the risk, pathogenesis and treatment

of thyroid disease, PubMed and the Cochrane Library were searched for relevant publica-

tions to provide a narrative review. Iodine: chronic exposure to excess iodine intake induces

autoimmune thyroiditis, partly because highly-iodinated thyroglobulin (Tg) is more

immunogenic. The recent introduction of universal salt iodisation can have a similar,

although transient, effect. Iron: iron deficiency impairs thyroid metabolism. TPO is a

haem enzyme that becomes active only after binding haem. AITD patients are frequently

iron-deficient since autoimmune gastritis, which reduces iron absorption and coeliac disease

which causes iron loss, are frequent co-morbidities. In two-thirds of women with persistent

symptoms of hypothyroidism despite appropriate levothyroxine therapy, restoration of

serum ferritin above 100 µg/l ameliorated symptoms. Selenium: selenoproteins are essential

to thyroid action. In particular, the glutathione peroxidases remove excessive hydrogen

peroxide produced there for the iodination of Tg to form thyroid hormones. There is evi-

dence from observational studies and randomised controlled trials that selenium, probably

as selenoproteins, can reduce TPO-antibody concentration, hypothyroidism and postpartum

thyroiditis. Appropriate status of iodine, iron and selenium is crucial to thyroid health.

Autoimmune thyroid disease: Autoimmune thyroiditis: Nutrition: Iodine: Iron: Selenium

The thyroid gland is the organ most commonly affected
by autoimmune disease(1). Lymphocytic infiltration of
the thyroid is a frequent post-mortem finding in some
40 % of white females and 20 % of white males in the
USA, with similar percentages of British white males
and females being affected(2). In black Americans and
Japanese, the occurrence of lymphocytic thyroid infiltra-
tion was less than half that in Caucasians(2).
Autoimmune thyroid disease (AITD) was probably first

described in 1912 when a Japanese physician, Hakaru
Hashimoto, reported a condition where the thyroid was
infiltrated by lymphocytes resulting in the production
of anti-thyroid antibodies(3).

AITD, also known as autoimmune thyroiditis, has a
multifactorial aetiology involving both genetic, environ-
mental and nutritional factors(4). It includes a spectrum
of thyroid conditions ranging from hypothyroidism,
most notably Hashimoto’s thyroiditis (HT) at one end,
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to hyperthyroidism, most commonly Graves’ disease
(GD) at the other end(4). In HT, the thyroid gland is
gradually destroyed resulting in reduced production of
thyroid hormones and triggering symptoms that include
fatigue, weight gain, constipation, increased sensitivity
to cold, dry skin, depression, muscle aches and reduced
exercise tolerance(5). HT affects more than 15 % of
females over 60 years and 2 % of males(6). It is defined
by the presence of antibodies to thyroid peroxidase
(TPO), the thyroid enzyme that oxidises iodide to iodine
for thyroid hormone synthesis(4). In addition, antibodies
to thyroglobulin (Tg), the protein on which thyroid hor-
mones are synthesised by iodination of its tyrosine resi-
dues, are frequently present(4). In GD, the major
autoantigen (thyroid-stimulating hormone (TSH)-anti-
body) is to the receptor for the TSH, which causes over-
production of thyroid hormones, resulting in symptoms
such as irritability, rapid heartbeat, weight loss, poor tol-
erance of heat and bulging eyes (Graves’
orbitopathy)(4,7,8).

Nutritional factors that affect thyroid function include
the micronutrients iodine, iron and selenium(9); these will
be discussed later. Though vitamin D has been postu-
lated to affect thyroid function, the evidence is insuffi-
cient(9) to include it in the present review.

PubMed and the Cochrane Library were searched for
publications up to March 2018 using the search terms
‘autoimmune thyroiditis’ OR ‘autoimmune thyroid dis-
ease’ in combination with ‘iodine’, ‘selenium’, ‘iron’ and
‘nutrition OR diet’. Articles were filtered by the relevance
of the title, abstract and finally the full text. Relevant
conclusions or results were extracted from each article
to provide a narrative review.

Iodine

Role of iodine in the thyroid

Iodine is a key constituent of the thyroid hormones, thy-
roxine (T4, pro-hormone) and tri-iodothyronine (T3,
active hormone), as shown in Fig. 1, which also depicts
the key players in thyroid hormone synthesis that takes
place in the thyroid follicular cells(10).

Iodine and autoimmune thyroid disease

The association between iodine intake and the presence of
circulating thyroid antibodies is complex with iodine intake
both below and above the recommended level being asso-
ciated with an increase in circulating antibodies(11).
Circulating TPO-antibodies and Tg-antibodies are com-
mon both in populations with a stable high iodine intake
and those with mild and moderate iodine deficiency
(ID)(12). Deficient iodine intake can lead to nodular goitre
in which thyroid antigens are released from the abnormal
gland, resulting in the presence of thyroid antibodies in
the circulation(13). However, excess iodine intake or a rise
in intake following iodine fortificationof an iodine-deficient
population also gives an increased risk of thyroid auto-
immunity, as attested by studies in many countries(14–24).
In China, for instance, 3 years after the introduction of

salt iodisation in 1996, the prevalence of AITD was 0·5 %
in an area of mildly deficient iodine intake, 1·7 % in an
area of more-than-adequate iodine intake and 2·8 % in an
area of excessive iodine intake(14). In Denmark, formerly
a region of mild-to-moderate ID (median urinary iodine
concentration 61 µg/l), 5 years after the mandatory iodine
fortification of salt, iodine status had significantly improved
(median urinary iodine concentration 101 µg/l), but the
prevalence of thyroid antibodies had risen, i.e. TPO-anti-
body >30 IU/ml increased from 14 to 24 % and
Tg-antibody >20 IU/ml increased from 14 to 20 %(18).
However, despite the short-term adverse effects on thyroid
autoimmunity, raising iodine intake from a deficient to an
optimal intake-level ultimately results in the decreased
prevalence of AITD; Denmark is an example of this(11,25).

Potential mechanisms by which high or increased iodine
intake raises autoimmune thyroid disease risk

The increase in circulating antibodies associated with iodine
fortification is probably due to a numberof factors including
the strong immunogenicity of highly iodinated Tg which
may trigger an immune reaction against the thyroid
gland(25,26). An additional factor may be that excess iodine
intake increases the expression of the intercellular adhesion
molecule-1, on the thyrocyte causing accelerated mono-
nuclear cell infiltration and inflammation(26). This has been
demonstrated in the NOD.H2h4 mouse model of auto-
immune thyroiditis where iodide treatment enhanced the
transcription of intercellular adhesion molecule-1 triggered
by reactive oxygen species and, in particular, by hydrogen
peroxide generated in the thyrocyte for the organification
of iodine(26,27). Other likely effects of high iodine intake in
susceptible individuals are an increased production of
thyroid-infiltrating T helper 17 cells, inhibition of T regula-
tory cell development and an abnormal expression of
TNF-relatedapoptosis-inducing ligand in thyrocytes, result-
ing in apoptosis and tissue destruction(28).

Iodine-intake recommendations to reduce autoimmune
thyroid disease risk

With regard to autoimmune thyroiditis, as can be seen
from the earlier section, there is more evidence for an
association with iodine excess than with deficiency, espe-
cially in genetically susceptible individuals(14,28,29). It is
therefore important to ensure, as far as possible, that iod-
ine intake falls within the recommended levels(11) (see
Table 1(30–32)). On a population basis, this would be
represented by a median urinary iodine concentration
in adults of 100–200 µg/l. Authorities introducing iodine
fortification of the food supply in a country (e.g. univer-
sal salt iodisation) need to ensure that such fortification is
introduced very cautiously; Denmark provides an excel-
lent example of how this can be done(33). Individuals liv-
ing in a country that does not have an iodine-fortified
food supply who avoid the main food sources of iodine,
i.e. milk and dairy products, seafood, most notably had-
dock, cod, crab, large/Dublin-bay prawns (often called
scampi) and eggs, and do not use iodised salt, should
be advised to take a daily supplement containing 140–
150 µg iodine for thyroid protection, particularly if
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planning pregnancy(34–36). Although high in iodine,
intake of brown seaweed (e.g. kelp/kombu), or brown-
seaweed supplements should be avoided as it may result
in excessive intake(37).

Iron

Role of iron in the thyroid

A haem-dependent enzyme, TPO, that has iron at its
active centre, is required for thyroid hormone synthesis,
as illustrated in Fig. 1(38,39). TPO becomes active at the
apical surface of thyrocytes only after it binds a pros-
thetic haem group(40), hence an adequate iron status is
required for the synthesis of thyroid hormones.

Co-morbidity of autoimmune thyroid disease and other
autoimmune conditions

It is not always appreciated that ID is common in people
with AITD owing to the frequent co-morbidity of other
autoimmune conditions such as coeliac disease(41–43)

and autoimmune gastritis(44–47) that often cause ID.
Patients with subclinical hypothyroidism or HT

frequently have lower serum iron concentration and a
higher prevalence of ID than do healthy controls(48,49).
A symbiotic relationship exists between active thyroid
hormone concentration and the formation of erythro-
cytes; T3 is needed to stimulate the proliferation of
erythrocyte precursors, both directly and by enhancing
the production of erythropoietin(50).

Fig. 1. (Colour online) Synthesis of the thyroid hormones in the thyroid follicle (modified from Häggström 2014(10)).

Thyroglobulin is synthesised in the rough endoplasmic reticulum and follows the secretory pathway to enter the

colloid in the lumen of the thyroid follicle by exocytosis. Meanwhile, a sodium-iodide (Na/I) symporter pumps iodide

(I−) actively into the cell, which previously has crossed the endothelium by largely unknown mechanisms. This iodide

enters the follicular lumen from the cytoplasm by the transporter pendrin, in a purportedly passive manner. In the

colloid, iodide (I−) is oxidised to iodine (I0) by hydrogen peroxide (H2O2) with the help of an enzyme called thyroid

peroxidase (TPO). Iodine (I0) is very reactive and iodinates the thyroglobulin at tyrosyl residues in its protein chain (in

total containing approximately 120 tyrosyl residues). In conjugation, adjacent tyrosyl residues are paired together,

again under the influence of TPO and H2O2. The entire complex re-enters the follicular cell by endocytosis.

Proteolysis by various proteases liberates thyroxine and triiodothyronine molecules, which enter the blood via a

monocarboxylate transporter (MCT).

Table 1. Iodine intake requirements by life stage according to various

authorities

Age

EFSA AI

(μg/d)(30)
USA RDA

(μg/d)(31)
ICCIDD/UNICEF/

WHO RNI (μg/d)(32)

0–6 month – 110 (AI) 90

7–12 month 70 130 (AI) 90

1–6 year 90 90 90

7–10 year 90 90–120 120

11–14 year 120 120–150 120–150

15–17 year 130 – –

15–50 year – 150 150

≥18 year 150 – –

Pregnancy 200 220 250

Lactation 200 290 250

AI, adequate intake; RNI, recommended nutrient intake.
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Dependence of thyroid function on iron status

ID reduces thyroid hormone production by decreasing the
activity of TPO(38–40). Evidence of the dependency of thy-
roid function on iron status comes from both animal and
human studies. In rodents, ID, with or without anaemia,
decreased serum T4 and T3 concentrations, lowered
5′-deiodinase (DIO) activity and reduced the ability to
thermoregulate in response to a cold environment(39,51–53).
In US women with mild ID anaemia (Hb, 110 g/l), serum
T3 and T4 were significantly lower than in iron-sufficient
controls(54). Furthermore, ID predicts poor maternal thy-
roid status in pregnancy; in a study on 365 Swiss pregnant
women in the second and third trimesters with borderline
ID (median urinary iodine concentration 139 µg/l), concen-
trations of TSH, total T4 and urinary iodine were mea-
sured. Body iron stores, calculated from blood Hb
concentration, mean corpuscular volume, serum ferritin,
and transferrin receptor were highly significant predictors
of TSH and total T4 (P< 0·0001)(55). We also know that
ID is associated with hypothyroxinaemia; serum free T4
concentrations were significantly lower in both 3340 preg-
nant and 1052 non-pregnant Chinese women with ID
than in iron-adequate women(56).

Effect of low iron stores on the efficacy of treatment for
hypothyroidism

It is important to recognise that low iron stores may con-
tribute to symptom persistence in patients treated for
hypothyroidism in 5–10 % of whom symptoms remain
despite being treated with levothyroxine (L-T4)(57). An
example is afforded by a small study in twenty-five
Finnish women with persistent symptoms of hypothyroid-
ism, despite appropriate L-T4 therapy, who became
symptom-free when treated with oral iron supplements
for 6–12 months(58). None of the women had anaemia
or erythrocyte indices outside the reference range although
all had serum ferritin <60 µg/l. Restoration of serum fer-
ritin above 100 µg/l ameliorated the symptoms in
two-thirds of the women. At least 30–50 % of hypothyroid
patients with persisting symptoms despite adequate L-T4
therapy may, in fact, have covert ID(58).

Supplementation with thyroid hormone can improve iron
status

An interesting fact is that supplementation with thyroid
hormone in patients with subclinical hypothyroidism
improves iron status. Early experiments in hypothyroid
rats showed diminished gastrointestinal iron absorption
that was restored to normal on supplementation with
T3(59). In iron-deficient women with subclinical hypothy-
roidism treated for 1 year with T4, the frequency of
anaemia decreased (P= 0·001) while ferritin, iron and
Hb levels slightly increased (P> 0·05)(49). In untreated
women, a further decrease in ferritin level and increase
in anaemia occurred(49). In two randomised controlled
trials (RCT) in patients with coexisting ID anaemia and
sub-clinical hypothyroidism, treatment with iron and
L-T4 together was considerably more effective in improv-
ing iron status than was treatment with iron alone(60,61).

Recommendations for iron intake in thyroid patients

Patients with AITD or hypothyroidism should be routinely
screened for ID. If either ID or serum ferritin below 70 µg/l
is found(58), coeliac disease or autoimmune gastritis may be
the cause and should be treated. Medication that reduces
the acidity of stomach contents (e.g. proton pump inhibi-
tors) may also cause reduced iron absorption(62). If ID
anaemia is present, haematological testing can be used to
rule out the anaemia of chronic disease as the cause. In
the absence of the latter, supplementation should be
begun to restore iron sufficiency and prevent its deleterious
effects on thyroid function(54,63).

Once iron sufficiency is restored, assuming there is no
underlying clinical cause of the deficiency, patients need
to be told how to optimise their dietary iron intake.
Foods with relatively high iron concentration include
meat, fish, cereals, beans, nuts, egg yolks, dark green
vegetables, potatoes and fortified foods(64). However,
iron is inefficiently absorbed, its bioavailability from dif-
ferent foods being markedly variable; bioavailability has
been estimated to be in the range of 14–18 % for mixed
diets and 5–12 % for vegetarian diets in individuals
with no iron stores(65). Absorption depends on a number
of dietary and host-related factors; haem iron (from
animal tissues) is considerably better absorbed than non-
haem iron, although the latter constitutes 90 % of the
iron in a mixed diet. Dietary factors that reduce non-
haem iron absorption include phytate, polyphenols and
calcium, while those that increase it include ascorbic
acid and muscle tissue(65). Following dietary advice,
iron status should be checked regularly.

Selenium

Role of selenium in the thyroid: selenoproteins

The thyroid contains the highest concentration of selen-
ium in the human body and is able to retain it even
under conditions of severe deficiency(66). A number of
selenoproteins are expressed in thyrocytes(67), those
named later being particularly important to thyroid
function.
The deiodinases. DIO1 and DIO2 can activate T4 by

transforming it into T3 by removal of the 5′-iodine, while
DIO1 and DIO3 can prevent T4 from being activated
by converting it to the inactive reverse T3(68) (Fig. 2).
DIO3 can also inactivate T3 by 5-deiodination to
diiodothyronine. DIO2 is largely responsible for the local
conversion of T4 to T3 in extrathyroidal target tissues(69).
A major role of DIO3 is to protect sensitive cells, such as
fetal tissue, the placenta and central nervous system, from
excessive concentrations of the active hormone, T3(69,70).
The glutathione peroxidases. Extracellular glutathione

peroxidase (GPX)3 is the only actively secreted GPX
isozyme that is abundantly expressed in the thyroid
gland(70). It is secreted at the apical side of the
thyrocyte membrane where it converts excess hydrogen
peroxide that has not been used by TPO for the
iodination of tyrosyl residues of Tg or for iodotyrosine
coupling, into harmless water(71).
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Selenoprotein S. Selenoprotein S (SELENOS) is
involved in the control of the inflammatory response in
the endoplasmic reticulum by retrotranslocation of
misfolded proteins from the endoplasmic reticulum
lumen to the cytosol(72). In a Portuguese study, the
SELENOS− 105G/A promoter polymorphism
(rs28665122) was strongly associated with circulating
levels of cytokines such as IL-1β, IL-6, and TNF-α,
known to be involved in the pathogenesis of HT(71,73).
Those with the SELENOS GA and AA genotypes were
significantly more likely to have HT: OR (95 % CI) for
HT was 2·22 (1·67, 2·95) and in male A-allele carriers,
3·94 (1·43, 10·84).

Effect of selenium status on thyroid disease

Selenium deficiency has been associated with a number
of adverse thyroid conditions, including hypothyroidism,
subclinical hypothyroidism, enlarged thyroid(74–77), thy-
roid cancer(67,77–79) and AITD, including HT(75,77) and
GD(77,80).

A study of thyroid disease prevalence in more than 6000
people from two counties of Shaanxi Province, China, of
very different selenium status, adequate and low, showed
theprotective effect of seleniumadequacy(75).Median (inter-
quartile range) serum selenium concentration differed
almost 2-fold (103·6 (79·7, 135·9) v. 57·4 (39·4, 82·1) μg/l;
P= 0·001) between the two counties although iodine status
was comparable(75).After adjustment for potential confoun-
ders, the prevalence of pathological thyroid conditions was
significantly lower in the adequate-selenium than in the low-
selenium county (18·0 v. 30·5%; P< 0·001). Higher serum
selenium was associated with significantly lower odds (OR
(95 % CI)) of autoimmune thyroiditis (0·47 (0·35, 0·65)),
hypothyroidism (0·75 (0·63, 0·90)), subclinical hypothyroid-
ism (0·68 (0·58, 0·93)) and enlarged thyroid (0·75 (0·59,
0·97))(75).The iodine intakewasmore-than-adequate(14,75,81)

in both counties which may have accounted to some extent
for the high prevalence of thyroid disease(15,82).

Selenium status has been found to be significantly lower
in patients with GD than in normal controls in Danish(80)

and Chinese studies(83). In the latter, serum selenium was

negatively correlated with serum titre of TPO-antibodies
(r= − 0·161, P = 0·021), and Tg-antibodies (r= − 0·237,
P= 0·001)(83). In a prospective, case–control study in an
Australian population, mean serum selenium decreased
in parallel with increasing severity of Graves’ orbitopathy:
94·0 (SD 15·8) µg/l in GD, 86·9 (SD 15·0) µg/l in
moderate-to-severe Graves’ orbitopathy and 86·1 (SD
13.4) µg/l in sight-threatening Graves’ orbitopathy (P=
0·003)(84). However, these datamay simply reflect the pres-
ence of inflammation in GD and more especially in
Graves’ orbitopathy; the expression of selenoproteins
including plasma selenoprotein P is reduced by inflamma-
tory cytokines resulting in a fall in plasma selenium(85,86).

Randomised controlled trials of selenium in thyroid
disease

Several trials of selenium supplementation have been
carried out in AITD/HT and mild Graves’ orbitopathy.

In a large, multicentre, RCT with selenium, patients
with mild Graves’ orbitopathy significantly improved on
treatment with 100 µg selenium twice/d (as sodium selen-
ite) for 6 months(7). Patients on selenium treatment had
improved quality of life (P< 0·001), less eye involvement
(P= 0·01) and slower disease progression (P= 0·01). The
benefit persisted at the 12-month follow-up. A protocol
for an RCT of selenium in patients with Graves’ hyper-
thyroidism (the GRASS trial) was published in 2013(87).
The primary outcome is the proportion of participants
with anti-thyroid drug treatment failure at the end of
the intervention period (24–30 months). Secondary out-
comes include thyroid-specific quality of life and eye
symptoms during the first year after randomisation(87).
The results of the trial have not yet been reported.

There have been a number of systematic reviews/
meta-analyses of controlled trials of selenium treatment
in patients with AITD/HT(70,88–90). The most recent is
a 2016 meta-analysis of sixteen trials that found that sel-
enium supplementation reduced serum TPO-antibodies
levels after 3, 6 and 12 months in a population with
chronic autoimmune thyroiditis treated with L-T4(88).
However, in an untreated autoimmune thyroiditis

Fig. 2. (Colour online) Action of the iodothyronine deiodinases, DIO1, DIO2 and DIO3, to produce

the active and inactive forms of thyroid hormone.
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population, the effect was significant only after 3
months(88). Some of these studies also saw a reduction
in Tg-antibody titre at 12 months, an improvement in
thyroid echogenicity and an increase in subjective well-
being. Unfortunately, the methodology of many of the
studies was flawed; underpowered, not double-blinded,
not placebo-controlled and disparities in iodine intake
were not considered(88,89,91). The beneficial effect in
some studies and not in others cannot easily be explained
on the basis of baseline selenium status, stage of disease,
baseline TPO-antibody titres, form or dose of selenium
used(4). Later studies not included in these meta-analyses
have been too small to contribute meaningful data(92,93).
Well designed, properly powered, RCT of selenium in the
treatment of AITD/HT are therefore still needed before
we can confidently recommend selenium supplementa-
tion in these patients. The protocol for a new, high-
quality, trial of selenium supplementation (Catalyst
Trial) in patients with chronic autoimmune thyroiditis
has been published(94). We await the results with interest.

The presence of thyroid autoantibodies is relatively
high in women of childbearing age(95). One notable
RCT has been carried out in pregnant women positive
for TPO-antibodies. Up to 50 % of such women develop
postpartum thyroiditis of whom 20–40 % subsequently
become hypothyroid(96). In an Italian study, 151
TPO-antibody positive women were randomly assigned
to supplementation with 200 µg selenium/d (as
selenomethionine) or placebo during pregnancy and the
postpartum period(97). TPO-antibodies fell significantly
during gestation in both groups but the reduction was
significantly greater in the selenium-supplemented
group (P = 0·01) and remained so in the postpartum per-
iod (P = 0·01) (see Fig. 3). Compared with women on
placebo, those on selenium had a significantly lower inci-
dence of post-partum thyroid disease (28·6 v. 48·6 %; P <
0·01) and permanent hypothyroidism (11·7 v. 20·3 %; P
< 0·01). In contrast to women on placebo, ultra-sound
echogenicity did not fall in those supplemented with sel-
enium. At the end of the postpartum period, grade 2–3
thyroiditis had developed in 44·3% of women on placebo
but only in 27·3% of women on selenium (P < 0·01)(97).

The only otherRCT that investigated the effect of selen-
ium supplementation onAITD in pregnancy found no dif-
ference in the magnitude of TPO-antibody decrease
between selenium and placebo groups(98). However the
median baseline TPO-antibody concentrations in the
women were much lower than in the earlier study, the sel-
enium dose was less than one third as high (60 µg/d) and
the trial was not adequately powered(98). Clearly, there is
a need for a further, high-quality, adequately powered
RCT in the TPO-antibody-positive pregnant population
to see if the results of the Italian study can be replicated(97).

Is selenium intake adequate to reduce the risk of thyroid
disease?

Selenium intake differs vastly from one part of the world
to another owing to differences in the selenium content of
the soil on which crops and fodder are grown, selenium
speciation, soil pH and organic-matter content(99). Intake

ranges from deficient (7 µg/d) to toxic (4990 µg/d) as
shown in Fig. 4(100,101). A vertical band in Fig. 4 shows
the level of intake believed to be needed to optimise the
activity of GPX3(101), the main selenoenzyme that
removes excess hydrogen peroxide from the thyroid. It
is clear that the mean intake in many countries, notably
those in Europe, does not achieve that level.

Recommendations for selenium intake

Although we lack evidence that selenium supplementation
results in clinical improvement in autoimmune thyroiditis
(other than in mild Graves’ orbitopathy), it still makes
sense to ensure that selenium intake is adequate, given
the roles played by selenoproteins in human health(100)

and particularly in the thyroid(70,71). Regions of deficient,
more-than-adequate or high iodine intake may have more
need for selenium owing to the capacity of selenoproteins
to protect the thyroid from excessive hydrogen peroxide(71)

and from inflammation(71) (see earlier). Hence, in such
locations, clinicians need to ensure that selenium intake/
status is adequate. Women are at greater risk of thyroid
disorders andmay thus have a higher requirement for add-
itional selenium, particularly in pregnancy. Geographical
location will give a good indication of selenium adequacy
or otherwise (see Fig. 4).

It is also important to enquire into the dietary habits
of a given patient and see if he/she eats foods that supply
selenium(100). Although Brazil nuts are the richest selen-
ium food source they cannot be recommended as a
main source as the content is very variable, ranging
from 0·03 to 512 mg/kg fresh weight, and they are high
in barium, which can be toxic(102). Otherwise, organ
meats and seafoods are the best sources, followed by
muscle meats, cereals and grains, although the selenium
content of the latter varies widely with location, being
towards or at the bottom of the range in the UK and
Europe but at the top in North America, most notably
in Canada (see Fig. 5)(100,102). In China,
selenium-enriched tea is an option(75). Given the sources
described, vegans and vegetarians in the West are par-
ticularly at risk of inadequate selenium intake.

Fig. 3. (Colour online) Selenium protects against postpartum

autoimmune thyroid disease (adapted from Negro et al.(97) with

permission 0. TPOAb, thyroid peroxidase antibodies.
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If a patient’s diet in a country of low-to-moderate sel-
enium intake contains few, or no, selenium-rich sources,
low-dose selenium supplementation can be advised
although no more than 50–100 µg selenium/d is advis-
able. Multi-vitamin/mineral tablets may contain 50 µg
selenium, a daily amount that will generally be adequate,
particularly for women. A dose of 100 µg selenium/d (as
selenium-yeast) given to someone in the UK will raise
plasma selenium to about 140 µg/l which is more than
enough to optimise the synthesis of all the

selenoproteins(103). Either selenium-yeast (which behaves
in the body such as wheat-selenium) or sodium selenite
which the body can readily use for selenoprotein synthe-
sis without increasing the build-up of selenium, will
do(102).

Clinicians should be aware that even if a hypothyroid
patient is being treated with L-T4, a number of studies
have found that giving selenium as well as L-T4 resulted
in a greater reduction in TPO-antibodies, inflammatory
cytokines and C-reactive protein(104,105).

Fig. 4. (Colour online) Mean selenium intake levels (μg/d) in different countries and the range of

selenium intake (55–75 µg/d) believed to be required for optimal activity of plasma glutathione

peroxidase (GPX3) (adapted from Rayman(101)).

Fig. 5. (Colour online) Typical selenium content of food sources, adapted from WHO. Selenium. A

report of the International Programme on Chemical Safety. Environmental Health Criteria number 58.

Geneva: WHO, 1987 (reproduced from Rayman(100)).
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Although selenium is essential, excessive intake is
toxic; supplements of selenium of 200 µg/d (as selenium
yeast or selenomethionine), generally considered to be
safe, have been associated with toxic effects (alopecia,
dermatitis, squamous cell carcinoma, type-2 diabetes
mellitus, high-grade prostate cancer) in North
Americans(106–108). If selenium concentration reaches or
exceeds 122 µg/l in plasma, as in the top tertile of the
Nutritional Prevention of Cancer trial(109) or is already
137 µg/l in serum, as in SELECT(106), supplementation
should be avoided(106–108,110). Furthermore, mortality
was found to be increased in a European population of
relatively low selenium status (plasma selenium 89 µg/l)
on long-term supplementation with 300 µg/d (as selen-
ium-yeast)(111). As for many nutrients, there is a
U-shaped relationship between selenium status and risk
of a number of adverse conditions(100). The aim should,
therefore, be to have an intake sufficient to reduce the
risk of thyroid disease without risking toxicity(100).

Conclusion

As explained in detail earlier, the appropriate status of
iodine, iron and selenium is crucial to thyroid health.
Nutritional status of these micronutrients is frequently
inadequate: iodine status is often low in countries with-
out iodine fortification of the food supply; selenium sta-
tus is generally fairly poor in Europe and many parts of
China; iron status is frequently low in women of child-
bearing age, particularly towards the end of pregnancy.
Clinicians need to be aware of these dietary risk factors
and to treat thyroid patients accordingly.
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